Luzinness on the real line

Robert Rałowski and Szymon Żeberski

Winter School, Hejnice 2010

Definition (Cardinal coefficients)

For any
$$I \subset \mathscr{P}(X)$$
 let

$$non(I) = min\{|A| : A \subset X \land A \notin I\}$$

$$add(I) = min\{|A| : \mathcal{A} \subset I \land \bigcup \mathcal{A} \notin I\}$$

$$cov(I) = min\{|\mathcal{A}| : \mathcal{A} \subset I \land \bigcup \mathcal{A} = X\}$$

$$cov_h(I) = min\{|\mathcal{A}| : (\mathcal{A} \subset I) \land (\exists B \in Bor(X) \setminus I) (\bigcup \mathcal{A} = B)\}$$

$$cof(I) = min\{|\mathcal{A}| : \mathcal{A} \subset I \land \mathcal{A} - \text{Borel base of } I\}$$

 \mathbb{K} - σ ideal of meager sets \mathbb{L} - σ ideal of null sets

Let $I,J\subset \mathscr{P}(X)$ are σ - ideals on Polish space X with Borel base. We say that $L\subset X$ is a (I,J) - Luzin set if

- L ∉ I
- ▶ $(\forall B \in I) B \cap L \in J$

If in addition the set L has cardinality κ then L is (κ,I,J) - Luzin set.

Definition

An ideals I and J are orthogonal in Polish space X if

$$\exists A \in \mathscr{P}(X) \ A \in I \land A^c \in J$$

and then we write $I \perp J$.

Let $I, J \subset \mathcal{P}(X)$ are σ - ideals on Polish space X with Borel base. We say that $L \subset X$ is a (I, J) - Luzin set if

- L ∉ I
- ▶ $(\forall B \in I) B \cap L \in J$

If in addition the set L has cardinality κ then L is (κ, I, J) - Luzin set.

Definition

An ideals I and J are orthogonal in Polish space X if

$$\exists A \in \mathscr{P}(X) \ A \in I \land A^c \in J$$

and then we write $I \perp J$.

Let $\mathscr{F} \subset X^X$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent respect to \mathscr{F} if

$$(\exists f, g \in \mathscr{F}) \ (B = f[A] \land A = g[B])$$

Definition

We say that $A,B\subset X$ are Borel equivalent if A,B are equivalent respect to the family of all Borel functions.

Definition

We say that σ - ideal I has Fubini property iff for every Borel set $A \subset X \times X$

$$\{x \in X : A_x \notin I\} \in I \Longrightarrow \{y \in X : A^y \notin I\} \in I$$

Let $\mathscr{F} \subset X^X$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent respect to \mathscr{F} if

$$(\exists f, g \in \mathscr{F}) (B = f[A] \land A = g[B])$$

Definition

We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent respect to the family of all Borel functions.

Definition

We say that σ - ideal I has Fubini property iff for every Borel set $A \subset X \times X$

$$\{x \in X : A_x \notin I\} \in I \Longrightarrow \{y \in X : A^y \notin I\} \in I$$

Let $\mathscr{F}\subset X^X$ be any family of functions on the Polish space X. We say that $A,B\subset X$ are equivalent respect to \mathscr{F} if

$$(\exists f, g \in \mathscr{F}) (B = f[A] \land A = g[B])$$

Definition

We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent respect to the family of all Borel functions.

Definition

We say that σ - ideal I has Fubini property iff for every Borel set $A \subset X \times X$

$$\{x \in X : A_x \notin I\} \in I \Longrightarrow \{y \in X : A^y \notin I\} \in I$$

Fact

Assume that $I \perp J$.

- 1. There exist a (I, J) Luzin set.
- 2. If L is a (I, J) Luzin set then L is not (J, I) Luzin set.

Theorem (Bukovsky)

If κ is uncountable rebular cardinal and there are $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ and $(\lambda, \mathbb{L}, [\mathbb{R}]^{<\lambda})$ - Luzin sets then

$$\kappa = cov(\mathbb{K}) = non(\mathbb{K}) = non(\mathbb{L}) = cov(\mathbb{L}) = \lambda.$$

Theorem (Bukovsky)

If $\kappa = cov(\mathbb{K}) = cof(\mathbb{K})$ then there exists $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ - Luzin set.

Theorem (Bukovsky)

If κ is uncountable rebular cardinal and there are $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ and $(\lambda, \mathbb{L}, [\mathbb{R}]^{<\lambda})$ - Luzin sets then

$$\kappa = cov(\mathbb{K}) = non(\mathbb{K}) = non(\mathbb{L}) = cov(\mathbb{L}) = \lambda.$$

Theorem (Bukovsky)

If $\kappa = cov(\mathbb{K}) = cof(\mathbb{K})$ then there exists $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ - Luzin set.

Theorem

Assume that $\kappa = cov(I) = cof(I) \le non(J)$. Let \mathcal{F} be a family of functions from \mathscr{X} to \mathscr{X} . Assume that $|\mathcal{F}| \le \kappa$. Then we can find a sequence $(L_{\alpha})_{\alpha < \kappa}$ such that

- 1. L_{α} is (κ, I, J) Luzin set,
- 2. for $\alpha \neq \beta$, L_{α} is not equivalent to L_{β} with respect to the family \mathcal{F} .

Remark

From proof of the above Theorem we have

$$(\forall \alpha, \beta, \zeta < \kappa) \ (\alpha \neq \beta \rightarrow |f_{\zeta}[L_{\alpha}] \setminus L_{\beta}| = \kappa).$$

Theorem

Assume that $\kappa = cov(I) = cof(I) \le non(J)$. Let \mathcal{F} be a family of functions from \mathscr{X} to \mathscr{X} . Assume that $|\mathcal{F}| \le \kappa$. Then we can find a sequence $(L_{\alpha})_{\alpha < \kappa}$ such that

- 1. L_{α} is (κ, I, J) Luzin set,
- 2. for $\alpha \neq \beta$, L_{α} is not equivalent to L_{β} with respect to the family \mathcal{F} .

Remark

From proof of the above Theorem we have

$$(\forall \alpha, \beta, \zeta < \kappa) \ (\alpha \neq \beta \rightarrow |f_{\zeta}[L_{\alpha}] \setminus L_{\beta}| = \kappa).$$

Let us notice that for every ideal I we have the inequality $cov(I) \leq cof(I)$. This gives the following corollary.

Corollary

If $2^{\omega} = cov(I) = non(J)$ then there exists continuum many different (I, J) - Luzin sets which aren't Borel equivalent. In particular, if CH holds then there exists continuum many different (ω_1, I, J) - Luzin sets which aren't Borel equivalent.

Corollary

If $2^{\omega} = cov(I) = non(J)$ then there exists continuum many different (I, J) - Luzin sets which aren't equivalent with respect to all I-measurable functions.

In particular, if CH holds then there exists continuum many different (ω_1, I, J) - Luzin sets which aren't equivalent with respect to all I-measurable functions.

Let us notice that for every ideal I we have the inequality $cov(I) \leq cof(I)$. This gives the following corollary.

Corollary

If $2^{\omega} = cov(I) = non(J)$ then there exists continuum many different (I, J) - Luzin sets which aren't Borel equivalent. In particular, if CH holds then there exists continuum many different (ω_1, I, J) - Luzin sets which aren't Borel equivalent.

Corollary

If $2^{\omega} = cov(I) = non(J)$ then there exists continuum many different (I, J) - Luzin sets which aren't equivalent with respect to all I-measurable functions.

In particular, if CH holds then there exists continuum many different (ω_1, I, J) - Luzin sets which aren't equivalent with respect to all I-measurable functions.

Definiable (idealized) forcing was developed by J. Zapletal (see [8])

Lemma (folklore)

Let I be σ - ideal on 2^{ω} with conditions:

- $ightharpoonup \mathbb{P}_I = Bor(2^\omega) \setminus I$ be a proper,
- ▶ I has Fubini property.

Assume that $B \in Bor(2^{\omega}) \cap I$ be a Borel set in V[G]. Then there exists $D \in V$ s.t.

$$B\cap (2^{\omega})^V\subset D\in I.$$

For Cohen and Solovay reals, see Solovay, Cichoń and Pawlikowski, see [2, 4, 7]

Proof

Let B – name for B \dot{r} – canonical name for generic real then there exists $C \in Bor(2^\omega \times 2^\omega) \cap (I \otimes I)$ – Borel set coded in ground model V $B = C_{\dot{r}_G}$ and $C \in I \otimes I$ Now by Fubini property:

$$\{x: C^x \notin I\} \in I.$$

Let $x \in B \cap (2^{\omega})^V$ then $V[G] \models x \in B$

$$0 < ||x \in \dot{B}|| = ||x \in C_{\dot{r}}|| = ||(\dot{r}, x) \in C|| = ||\dot{r} \in C^{x}|| = |C^{x}|_{I}$$

Then we have:

$$B \cap (2^{\omega})^V \subset \{x : C^x \notin I\} \in I.$$

Let $M \subseteq N$ be standard transitive models of ZF. Coding Borel sets from the ideal I is absolute iff

$$(\forall x \in M \cap \omega^{\omega})M \vDash \#x \in I \leftrightarrow N \vDash \#x \in I.$$

Theorem

Let $\omega < \kappa$ and I, J be σ - ideals with Borel base on 2^{ω} ,

- ▶ $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper forcing notion,
- ► I has Fubini property,
- ▶ Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ - is preserving (I, J) - Luzin set porperty.

Proof

Let G is \mathbb{P}_I generic over V L - (κ,I,J) - Luzin set in the ground model V. In V[G] take any $B\in I$ then $L\cap B\cap V=L\cap B$ but by Lemma $L\cap B\in I$ in V so we can find $b\in 2^\omega\cap V$ - Borel code s.t. $B\cap V\subset \#b\in I\cap V$ But L is (I,J)-Luzin set then $L\cap \#b\in J\cap V$, Let $c\in 2^\omega\cap V$ be a Borel code s.t. $L\cap \#b\subset \#c\in J\cap V$ then by absolutness $\#c\in J$ in V[G] finally we have in V[G]

$$L \cap B = L \cap B \cap V \subset L \cap \#b \subseteq \#c \in J \text{ in } V[G].$$

Theorem

Let (\mathbb{P}, \leq) be a forcing notion such that

$$\{B: B \in I \cap \operatorname{Borel}(\mathscr{X}), B \text{ is coded in } V\}$$

is a base for I in $V^{\mathbb{P}}[G]$. Assume that Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve being (I, J) - Luzin sets.

Corollary

Let (\mathbb{P}, \leq) be any forcing notion which does not change the reals i. e. $(\omega^{\omega})^V = (\omega^{\omega})^{V^{\mathbb{P}}[G]}$. Assume that Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve being (I, J) - Luzin sets.

Corollary

Assume that (\mathbb{P}, \leq) is a σ -closed forcing and Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Corollary

Let (\mathbb{P}, \leq) be any forcing notion which does not change the reals i. e. $(\omega^{\omega})^{V} = (\omega^{\omega})^{V^{\mathbb{P}}[G]}$. Assume that Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve being (I, J) - Luzin sets.

Corollary

Assume that (\mathbb{P}, \leq) is a σ -closed forcing and Borel codes for sets from ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Corollary

Let $\lambda \in On$ be an ordinal number. Let $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support. Spouse that

- 1. for any $\alpha < \lambda \ P_{\alpha} \Vdash \dot{Q}_{\alpha} \sigma$ closed ,
- 2. Borel codes for sets from ideals I, J are absolute, then \mathbb{P}_{λ} preserve (I,J) Luzin sets.

Measure case

Let Ω is a family of clopen sets of Cantor space 2^ω and

$$C^{random} = \{ f \in \Omega^{\omega} : (\forall n \in \omega) \mu(f(n)) < 2^{-n} \}$$

with discrite topology.

Let us define $\sqsubseteq = \bigcup_{n \in \omega} \sqsubseteq_n$ where

$$(\forall f \in C^{random})(\forall g \in 2^{\omega})(f \sqsubseteq_n g \leftrightarrow (\forall k \ge n) g \notin f(k)).$$

Definition (almost preserving)

We say that forcing notion P almost preserving relation \sqsubseteq^{random} whenever for any countable elementary submodel $N \prec H_{\kappa}$ for enough large κ function g which covering $N \cap C^{random}$ with $P, \sqsubseteq^{random} \in N$ If $p \in P \cap N$ then there exists stronger condition $q \in P$ which is (N, P) generic s.t. $q \Vdash g$ covers N[G]

Definition of the notion of preservation of relation \sqsubseteq^{random} by forcing notion (\mathbb{P}, \leq) can be found in paper [5]. Let us focus on the following consequence of that definition.

Definition (almost preserving)

We say that forcing notion P almost preserving relation \sqsubseteq^{random} whenever for any countable elementary submodel $N \prec H_{\kappa}$ for enough large κ function g which covering $N \cap C^{random}$ with $P, \sqsubseteq^{random} \in N$ If $p \in P \cap N$ then there exists stronger condition $q \in P$ which is (N, P) generic s.t. $q \Vdash g$ covers N[G]

Definition of the notion of preservation of relation \sqsubseteq^{random} by forcing notion (\mathbb{P}, \leq) can be found in paper [5]. Let us focus on the following consequence of that definition.

Theorem (Goldstern)

If (\mathbb{P}, \leq) preserves \sqsubseteq^{random} then $\mathbb{P} \Vdash \mu^*(2^{\omega} \cap V) = 1$.

Now we say that forcing notion $\mathbb P$ is preserving outer measure iff $\mathbb P$ preserve \sqsubseteq^{random} .

Theorem (Goldstern, Judah, Shelah)

Random forcing and Laver forcing preserves outer measure.

Here we cite from [5] the preservation Theorem:

Theorem (Goldstern)

Let $\mathbb{P}_{\lambda} = ((P_{\alpha}, Q_{\alpha}) : \alpha < \gamma)$ be any countable support iteration such that

$$(\forall \alpha < \gamma) P_{\alpha} \Vdash Q_{\alpha} \text{ preserves } \sqsubseteq^{random}$$

then \mathbb{P}_{γ} preserves the relation $\sqsubseteq^{\mathsf{random}}$.

Theorem

Assume that \mathbb{P} is a forcing notion which preserves \sqsubseteq^{random} . Then \mathbb{P} preserves being (\mathbb{L}, \mathbb{K}) -Luzin set.

Here we cite from [5] the preservation Theorem:

Theorem (Goldstern)

Let $\mathbb{P}_{\lambda} = ((P_{\alpha}, Q_{\alpha}) : \alpha < \gamma)$ be any countable support iteration such that

$$(\forall \alpha < \gamma) P_{\alpha} \Vdash Q_{\alpha} \text{ preserves } \sqsubseteq^{random}$$

then \mathbb{P}_{γ} preserves the relation $\sqsubseteq^{\mathsf{random}}$.

Theorem

Assume that \mathbb{P} is a forcing notion which preserves \sqsubseteq^{random} . Then \mathbb{P} preserves being (\mathbb{L}, \mathbb{K}) -Luzin set.

The analogous machinery can be used for ideal of meager sets \mathbb{K} . Here we rapidly recall from Goldstern paper [5] the necessary definitions. Let C^{Cohen} be set of all functions from $\omega^{<\omega}$ into itself. Then $\sqsubseteq^{Cohen} = \bigcup_{n \in \omega} \sqsubseteq^{Cohen}_n$ and for any $n \in \omega$ let

$$(\forall f \in C^{Cohen})(\forall g \in \omega^{\omega}) \ f \sqsubseteq_n^{Cohen} g \ \text{iff}$$

$$(\forall k < n) \ g \upharpoonright k^{\frown} f(g \upharpoonright k) \subseteq g.$$

Then finally we have the following Theorem:

Theorem

Assume that \mathbb{P} is a forcing notion which preserves \sqsubseteq^{Cohen} . Then \mathbb{P} preserves being (\mathbb{K}, \mathbb{L}) -Luzin set.

- T. Bartoszynski, H. Judah, S. Shelah, *The Cichon Diagram*, J. Symbolic Logic vol. 58 (2) (1993), pp.401-423,
- J. Cichoń, *On two-cardinal properties of ideals*, Trans. Am. Math. Soc. **vol 314**, no. 2 (1989), pp 693-708,
- J. Cichoń, J. Pawlikowski, *On ideals of subsets of the plane and on Cohen reals*, J. Symbolic Logic **vol. 51**, no. 1 (1986), pp 560-569
- J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic **vol. 51** no. 4 (1986), pp 957-968,
- M. Goldstern, *Tools for your forcing construction*, Israel Mathematical Conference Proceedings, vol. 06 (1992), pp.307-362,
- H. Judah, S. Shelah, *The Kunnen Miller chart*, Journal of Symbolic Logic, (1990).
- R. Solovay, A model of set theore in which every set is Lebesgue measurable, Annals of Mathematics **92** ser 2 (1970), pp. 1-56